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Abstract. Formulae are derived for traces of symmetry-adapted reduced density operators 
in a finite-dimensional, antisymmetric and spin-adapted space. The traces are expressed 
in terms of traces of products of the orbital occupation number operators. 

1. Introduction 

Traces of p-order reduced density operators ( PRDOS) calculated in N-electron spin- 
adapted model spaces spanned by Cartesian products of orthonormal spin-orbitals 
(also known as full configuration interaction spaces) are of importance in the theory 
of spin-adapted reduced Hamiltonians (Valdemoro 1989 and references therein), in 
statistical theories of spectra (Bauche and Bauche-Amoult 1990, Karwowski 1989, 
Bancevicz et a1 1989, Karwowski and Bancewicz 1987) and also in computational 
approaches to many-electron system theory (Diercksen and Karwowski 1987). Similar 
kinds of traces are also needed to calculate the propagation coefficients in the statistical 
theory of nuclear spectra (Brody et a1 1981, Ginocchio 1973, Nomura 1985, 1986). 
Traces of certain kinds of the reduced density and related operators were recently 
calculated by Karwowski et a1 (1986), Karwowski and Bancewicz (1987), Karwowski 
(1989), Duch (1989), Nomura (1988), Karwowski and Valdemoro (1988). The most 
complete work on this subject, where traces of arbitrary ~ R D O S  have been expressed 
in terms of traces of the occupation number operators was published by Planelles et 
a1 (1990a). 

In several areas of theory of N-electron systems, including many-body perturbation 
theory, the coupled cluster method (Kutzelnigg 1985) and the theory of spin-adapted 
reduced Hamiltonians (Lain et a1 1988, Planelles et a1 1990a) permutation-symmetry- 
adapted PRDOS are of importance. In this note a method of calculation traces of the 
symmetry-adapted ~ R D O S  is presented. 

2. Symmetry-adapted PRDOS 

A primitive PRDO is defined as (Kutzelnigg 1985) 

(1) 
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where bL/ bi, are the Fermion creation/annihilation operators. Alternatively, the PRDO 
may be expressed in terms of the spin-adapted p-electron creation and annihilation 
operators (Planelles er a1 1990a) 

where a and p are strings of the orbital indices ( i l  i 2 .  . . i p ,  and a l a z .  . . a,, respectively). 
Each of the strings consists of p indices. Some of them appear once in a string and 
they are referred to as singles and some appear twice and they are referred to as 
doubles. The Pauli principle does not allow an index to appear more than twice. J 
and MJ are the total spin quantum numbers, Jmin  = 0,1/2 depending on whether p is 
even or odd, J,,, = p/2  - q where q is the larger of the number of doubles in the a 
and p strings of the orbital labels; A is to distinguish different independent spin 
couplings leading to the same J and Mj values and, f ( S ,  p )  represents the number of 
different spin coupling schemes. The number of different spin coupling schemes is 
given by the Heisenberg formula 

where p '  = 2Jm,, . 
A spin-adapted p-particle creation operator acting on the vacuum state creates an 

antisymmetric, p-electron, spin eigenfunction corresponding to a given orbital configur- 
ation, i.e. 

K , J M J * I O )  = la, JMJh). (4) 

If % is a permutation operator acting in the orbital space only, then 

where the U;(%) matrices form an irreducible representation o fp  ! element permutation 
group Sp,  if only singles appear in a. Otherwise U:(%) stand for appropriate blocks 
of these matrices (cf Pauncz 1979). 

The symmetry-adapted RDOS are defined as (Kutzelnigg 1985) 

where %a means permutation of the orbitals in the string a. It may be shown by 
combining (2) and (4)-(6) that 

and 

where 
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3. Traces of symmetry-adapted PRDOS 

Let us consider the trace 

where the sum runs over the N-electron basis of spin-adapted antisymmetrized products 
of orthonormal orbitals. K is the number of orbitals, J and M are the total spin 
quantum numbers, k distinguishes different spin functions of the same J M ,  and A 
stands for the orbital configuration. For more details concerning structure of this space, 
see e.g. Karwowski and Bancewicz (1987) and references therein. Its dimension is 
(Paldus 1974) 

2 J + l (  K + l  )( K + l  ) 
D(N,J ,  K ) = -  

K + l  N / 2 - J  N / 2 - J + 1  * 

Since the orbitals are assumed to be orthonormal, the traces are equal to 0 if sets CY 

and /3 are not the same. In other words, a necessary condition for the trace to be 
different from 0 is that p = %a, where 52 is a permutation. Hence, (9) yields 

f( J , P  1 
Tr(J; a k  P V ) N K  = p )  1 U?(%)Ap Tr(J; a V ) N K  (12) 

A = l  

where S(a,  /I) = 1 if p = 52a and S(a, p )  = 0 otherwise. 

order to proof this property let consider the identity 
As one can check, Tr(J;  ah, is A independent (cf Planelles et a1 1990a). In 

where 3 acts on all orbitals in the RDO. The right-hand side of this equation may be 
transformed using ( lo) ,  (5), (7 ) ,  (9) and the orthogonality relation for irreducible 
representation matrices. Finally we obtain 

Since the right-hand side of this equation is hindependent, we can write 

Tr(J;  ah, ah)NK =Tr(J, ( Y ) N K .  (15) 

Equation (15) states, that in the matrix Tr(J;  ah, ~ v ) N K  with rows/columns numbered 
by A /  v all diagonal elements are the same. This property remains valid independently 
of the representation chosen, i.e. independently of a unitary transformation of the 
matrix. Therefore the matrix Tr(J;  ah, a v ) N K  must be a scalar matrix, i.e. 

Substituting the last result into (12) we get 

Tr(J; a k  P v ) N K  = S ( a ,  P )  U?(B)v,i TdJ, a ) N K .  (17) 
The structure of the last equation is similar to that of the Wigner-Eckart theorem. The 
trace of a symmetry-adapted RDO is factorized in such a way that all the information 
connected with the specific symmetry properties is carried by a universal coefficient 
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( UP,( 92) ”~ in (17), the Clebsch-Gordan coefficient in the Wigner-Eckart theorem) 
while the remaining factor contains information about the system under consideration 
(Tr(J,  the reduced matrix element). 

Taking trace of (8) with a = p and 3 = 1 and by using (16) we have 

j =  J m t n  

where the symbol ( )N,K stands for a trace in the N-electron, K-orbital model space. 
According to Planelles et a1 (1990a), if there are q doubles in the string a of the 

orbital labels, then 

( P E ” , N . K  = ( n l n 2 . .  * np’ )N-Zq ,K-q  (19) 

where p ’  = p - 2q, ni, i = 1,2, . . . p ’  are occupation number operators. Explicit 
formulae for traces of products of the occupation number operators have been given 
by Karwowski and Bancewicz (1987), Nomura (1988), Karwowski and Valdemoro 
(1988). 

Let us come back to  (18). If a contains q doubles, then J,,, = p i 2  - q = p’/2 and 
f(j, p )  has to be replaced by f(j, p ‘ ) .  Let us note, that f( Jmax, p ’ )  = 1. Thus, (18) and 
(19) yield 

J - I  

The subsequent calculation of Tr(j, a )  is based on the fact that j is smaller than 
J,,, allowed for p particles, and therefore the freezing relation (Planelles et a1 1990a) 
can be used to remove from the string a singlet-coupled pairs of orbitals (i.e. two 
singles coupled to a singlet or a double). Thus, if there are p’  singles and ( p  -p‘)/2 
doubles in a, then (2.3) may be written as 

J - 1  
Tr(Jmax, a ) N K  = ( n l n 2 *  * np’)N-2q,K-q- f(j, p ’ )  Tr(j, a ’ 1 N - 2 q . K - q  (21) 

(22) 

J = J,,, 

where a’ is the string with no doubles. In particular, if a consists of doubles only, then 

Tr(’Ez)N,K =(’E:)N,K = ( 1 ) ~ - ~ , ~ - ~ / 2 =  D ( N - p ,  S, K-p/2) .  
In order to continue computing Tr(J - 1, a‘)N-2q,  K - q  we use the freezing theorem, 

= Tr( J - 1 ; a ”) (23) 
Then, since J -  1 is the highest value of spin attainable for a”, by using (21) we 
arrive at 

again taking out the singlet-coupled pairs: 

Tr( J - 1 ; a ’) N -2q,  - - 2 q  - 2, - - . 

WJ- 1, a ” ) ~ - 2 q - 2 , ~ - q - i  
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The procedure is continued until it terminates after J - Jmin steps. The final result can 
be expressed as 

An example of using the formalism is given in the appendix. Values of m i  coefficients 
for J s  3 are collected in table 1. The utilization of this table is quite easy. Let us take 
as an example the evaluation of the trace 

In this case J = 2, J,,, = 3, Jmin = 0. Then (26) reads 

= m : ( n l n 2 n 3 n 4 ) N - 2 , K - 1  + m : ( n l n 2 ) N - 4 , K - 2 +  m : ( l ) N - 6 , K - 3 .  

Taking the corresponding m-( values from J = 2 row of table and using (22) we get 

T =  (n l  n 2 n 3 n 4 ) ~ - 2 , ~  - 1  -3(nln2) ~ - 4 , ~ - 2  + D ( N  -6, J, K -3). 

Table 1. Values of m: coefficients, r = J - Jmln. 

J ( l ) i ( + )  r r - 1  r - 2  r - 3  

0 1 
2 1 
1 - 1  1 
2 -2 1 
2 1 -3 1 
2 3 -4 1 
3 -16 6 - 5  1 

I 

3 

5 
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Appendix. An example 

As an illustration of the described formalism, let us calculate trace of [’]E ::::it]. 
According to (8) 

[ 2 l E 1 2 3 4 [ l l - 4 ~ 1 2 3 4 -  ; [ l l ~ I 2 3 4 [ V l  * [ 0 1 ~ 1 2 3 4 [ ” 1  
1234[1] - 1234 1234ru1- C 1234[U]’ 

v = l  v = l  

Equations (16) and (19) yield 
Tr( [21,5 1234[ 1 1  

1 2 3 4 [ 1 ~ )  = ( n I n 2 n 3 n 4 ) , ~ , ~  -3 T d l ;  1234) , ,  -2  W O ;  1234)N,K. 
Now, from the freezing relation (Planelles et a1 1990a) we have 

Tr( 1; 1234) , ,  = Tr( 1; 12) N - 2 , K - I  
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and 

Tr(0; 1234)N,K = D ( N - 4 , J , K - 2 ) .  

Again using (8) we obtain 

Tr(1; 12)N-2 ,K-1=(nln2)N-2 ,K- l -D(N-4 ,J ,  K -2). 

Finally, 
Tr([21E 1234[11 

1234[1]) = ( ~ I % ~ , % ) N . K  -3 (n in2 )~-2 .~ - ,+2D(N-4 ,  J, K -2)- 

Explicit expressions for (nln2n3n4)N,K and (n1n2)N-2,K-l are given by Karwowski and 
Valdemoro (1988). 
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